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1. Introduction

During the past decade a lot of efforts went into the exploration of the nonperturbative

renormalization behavior of Quantum Einstein Gravity [1]–[16]. In [1] a functional renor-

malization group (RG) equation for gravity has been introduced; it defines a Wilsonian

RG flow on the theory space consisting of all diffeomorphism invariant action function-

als for the metric gµν . In [1] it has been applied to the Einstein-Hilbert approximation

which allows for an approximate calculation of the beta-functions of Newton’s constant

and the cosmological constant. The complete flow pattern was found in [4], and higher

derivative truncations were analyzed in [3, 5, 10]. Matter fields were added in refs. [2, 9],
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and in [12] the beta-functions of [1] and [3] were used for finding optimized RG flows. The

most remarkable result of these investigations is that the beta-functions of [1] predict a

non-Gaussian RG fixed point [8]. After detailed studies of the reliability of the pertinent

truncations [3 – 5, 12] it is now believed that it corresponds to a fixed point in the exact

theory and is not an approximation artifact. It was found to possess all the necessary

properties to make quantum gravity nonperturbatively renormalizable along the lines of

Weinberg’s “asymptotic safety” scenario [17, 18], thus overcoming the notorious problems

related to its nonrenormalizability in perturbation theory. We shall refer to the quantum

field theory of the metric tensor whose infinite cutoff limit is taken at the non-Gaussian

fixed point as Quantum Einstein Gravity or “QEG”. This theory should not be thought of

as a quantization of classical general relativity. Its bare action is dictated by the fixed point

condition and is therefore expected to contain more invariants than the Einstein-Hilbert

term only. Independent evidence pointing towards a fixed point in the full theory came

from the symmetry reduction approach of ref. [19] where the 2-Killing subsector of the

gravitational path integral was quantized exactly.

Except for the latter investigations, all recent studies of the asymptotic safety scenario

in gravity made use of the approach outlined in [1]. It is based upon the concept of the

effective average action [20 – 22], a specific continuum implementation of the Wilsonian

renormalization group. In its original form for matter theories in flat spacetime it has been

applied to a wide range of problems both in particle and statistical physics. As compared to

alternative functional RG approaches in the continuum [23] the average action has various

crucial advantages; the most important one is its similarity with the standard effective

action Γ. In fact, the average action is a scale dependent functional Γk depending on a

“coarse graining” scale k which approaches Γ in the limit k → 0 and the bare action S in the

limit k → ∞. The close relationship of Γk and the standard Γ was often crucial for finding

the right truncations of theory space encapsulating the essential physics. From conventional

field theory we have a well-trained intuition about what a typical effective action Γ should

look like, and we can now use this experience in order to guess, and subsequently verify (or

falsify) by explicit computations what the important terms in Γk are. For the functionals

evolved by the older exact RG equations a comparable understanding is lacking ususally.

Another advantage of the average action is that it defines a family of effective field

theories {Γk, 0 ≤ k < ∞} labeled by the coarse graining scale k. If a physical situation

involves only a single mass scale, then it is well described by a tree level evaluation of

Γk, with k chosen to equal that scale. In particular, the stationary points of Γk have the

interpretation of a k-dependent field average (approaching the standard 1-point function

for k → 0). The quality of the effective field theory description depends on the size of the

fluctuations relative to the average field.

In gravity the effective average action of [1] is a diffeomorphism invariant functional of

the metric: Γk[gµν ]. Here the analogous average field 〈gµν〉k satisfies the “effective Einstein

equations”
δΓk

δgµν(x)
[〈g〉k] = 0. (1.1)

A given quantum state |Ψ〉 of the gravitational field implies an infinite family of average
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metrics: {〈gµν〉k, 0 ≤ k < ∞}. A scale dependence of the metric [42] has profound

consequences since 〈gµν〉k describes a geometry of spacetime which depends on the degree

of “coarse graining”, or the “resolving power” of the “microscope” with which it is looked

upon. In the case of QEG, it has been shown [3, 5] that this scale dependence leads to

fractal properties of spacetime, and that in the scaling regime of the non-Gaussian fixed

point, corresponding to sub-Planckian distances, the fractal dimension of spacetime equals

2. In particular, making essential use of (1.1) and the effective field theory properties of Γk,

the spectral dimension [24] has been calculated; it was found to interpolate between 4 at

macroscopic, and 2 at microscopic distances [25]. In [26], Connes et al. speculated about

the possible relevance of this dimensional reduction for the noncommutative geometry of

the standard model. Remarkably, exactly the same dimensional reduction has been found

in Monte Carlo simulations within the causal dynamical triangulation approach [24, 27, 28].

The purpose of the present paper is to discuss in detail the conceptual status of the

metric families {〈gµν〉k, 0 ≤ k < ∞} and to illustrate, by means of simple examples,

the novel physical effects which arise from a k-dependence of the spacetime geometry. In

particular we argue that there is a well-defined notion of a scale dependent causality. We

also analyze the question how, and to what extent, geometric structures or material objects

in a QEG spacetime can be ascribed an “intrinsic” length which one would then consider

“the” length of the objects.

The motivation for this work is that one would like to extract as much physical infor-

mation as possible directly from the RG flow. Up to now this was mostly done by some

form of “renormalization group improvement” [29]–[38] whereby k is identified with some

scale typical for the physical situation under study. The notorious difficulty of this method

consists in finding the correct “cutoff identification”. Moreover, even if by some high degree

of symmetry, for instance, this identification is uncontroversial, the disadvantage is that

only spacetime properties on a single typical scale are described, albeit on a dynamically

natural one. In the present paper, the idea is to completely abandon the “cutoff identifica-

tion”. Instead we try to “visualize” the stock of Riemannian structures {〈gµν〉k} as a whole

and to deduce information about the physical properties of the QEG spacetimes from it.

Before closing this introduction, let us be slightly more explicit about the construction

of Γk for gravity [1]. Its (formal) starting point is the path integral
∫

Dγµν exp (−S[γ])

over all metrics γµν , gauge fixed by means of a background gauge fixing condition [39].

Even without an infrared cutoff, upon introducing sources and performing a Legendre

transformation one is led to an effective action Γ [gµν ; ḡµν ] which depends on two metrics,

the expectation value of γµν , denoted gµν , and the non-dynamical background field ḡµν .

It is well-known [39] that the functional Γ[gµν ] ≡ Γ[gµν ; ḡµν = gµν ] obtained by equating

the two metrics generates a possible set of 1PI Green’s functions of the theory. The

average action has a built-in, variable IR cutoff. This IR cutoff is implemented by first

expanding the shifted integration variable hµν ≡ γµν − ḡµν in terms of eigenmodes of D̄2,

the covariant Laplacian formed with the background metric ḡµν , and interpreting Dhµν as

an integration over all expansion coefficients. Then a suppression term is introduced which

damps the contribution of all D̄2-modes with eigenvalues smaller than k2. Following the

usual steps [22, 23] this leads to the scale dependent functional Γk[gµν ; ḡµν ], and again the

– 3 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
9

action with one argument is obtained by equating the two metrics: Γk[gµν ] ≡ Γk[gµν ; ḡµν =

gµν ]. It is this action which appears in (1.1).

At least when one applies the average action technique to Euclidean non-gauge theories

on flat space, Γk may be interpreted as arising from a continuum version of a Kadanoff-

Wilson block spin procedure, i.e. it defines the dynamics of “coarse grained” dynamical

variables which are averaged over a certain region of Euclidean spacetime. Denoting the

typical linear extension of the averaging region by `, one has ` ≈ π/k in flat spacetime.

In this sense, Γk can be thought of as a “microscope” with an adjustable resolving power

` = `(k). In quantum gravity where the metric is dynamical the relationship between the

IR cutoff k and the averaging scale ` is more complicated in general. We will return to this

issue in section 3.

The running action Γk satisfies an exact functional RG equation [1]. In practice it

is usually solved on a truncated theory space. In the Einstein-Hilbert truncation of pure

gravity Γk is approximated by a functional of the form

Γk[g] = (16πG(k))−1
∫

d4x
√

g {−R(g) + 2Λ(k)} (1.2)

involving a running Newton constant G(k) and cosmological constant Λ(k). For each k,

the action (1.2) implies an effective field equation which happens to be of the form of the

classical Einstein equation:

Rµν(〈g〉k) = Λ(k) 〈gµν〉k . (1.3)

Note that the running Newton constant G(k) does not appear in this effective Einstein

equation. It enters only when matter fields are introduced. In this case it reads

Gµν(〈g〉k) = −Λ(k) 〈gµν〉k + 8πG(k) 〈Tµν〉k (1.4)

where the scale dependent energy momentum tensor is given by the functional derivative

of the matter part of the average action, ΓM
k [gµν , χ]:

〈T µν(x)〉k ≡ 2√−g

δΓM
k [〈g〉k , 〈χ〉k]

δgµν(x)
. (1.5)

Eq. (1.4) is coupled to the equation of motion

δΓM
k

δχ(x)
[〈g〉k , 〈χ〉k] = 0. (1.6)

Here χ denotes the set of matter fields, and {〈g〉k , 〈χ〉k} is a solution to the coupled gravity

plus matter field equations. The effective Einstein equations (1.4) are consistent since, for

χ “on shell”, the energy momentum tensor is covariantly conserved:

Dµ(〈g〉k) 〈T µν(x)〉k = 0. (1.7)

Here the connection which defines the covariant derivative is built from 〈g〉k. Eq. (1.7) is

a consequence of the diffeomorphism invariance of ΓM
k .
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As for the RG trajectories following from the Einstein-Hilbert approximation [4], there

are several types of them, conveniently plotted in terms of the dimensionless parameters

g(k) ≡ k2G(k) and λ(k) ≡ Λ(k)/k2. Among them, “Type IIIa” trajectories are the type

that is presumably realized in the real universe since it is the only type that has a positive

Newton’s constant G(k) and a small positive cosmological constant Λ(k) at macroscopic

scales. The Type IIIa trajectory contains the following four parts, with increasing values

of the cutoff k:

(i) The classical regime for small k where the trajectory is identical to a canonical one,

with G =const, Λ =const.

(ii) The turnover regime where the trajectory, close to the Gaussian fixed point at g =

λ = 0, begins to depart from the canonical one and turns over to the separatrix which

connects the Gaussian with the non-Gaussian fixed point (g∗, λ∗). By definition, the

coordinates of the turning point T are gT and λT , and it is passed at the scale k = kT .

(iii) The growing Λ regime where G(k) is approximately constant but Λ(k) runs propor-

tional to k4.

(iv) The fixed point regime where the trajectory approaches the non-Gaussian fixed point

in an oscillating manner. Directly at the fixed point one has g(k) ≡ g∗ and λ(k) ≡ λ∗,

and therefore G(k) ∝ k−2 and Λ(k) ∝ k2 for k → ∞. The non-Gaussian fixed point

is responsible for the nonperturbative renormalizability of the theory.

The behavior of the trajectory in the extreme IR is not yet known since the Einstein-

Hilbert approximation breaks down when λ(k) approaches 1/2. A more general truncation

is needed to approximate the RG trajectory in that region. For this reason the classical

region i) does not necessarily extend to k = 0, and we speak about “laboratory” scales for

values of k ≡ klab in the region where G and Λ are constant.

The remaining sections of this paper are organized as follows. In section 2 we discuss

various conceptual issues related to the families {〈gµν〉k}, in particular their connection

with the quantum state, the status of k-independent vs. k-dependent diffeomorphisms, and

symmetries of QEG spacetimes. In this section we also explain the idea of a scale dependent

causality. Section 3 is devoted to “k-microscopes”, a universal and mathematically simple

model of an experimental setup for the observation of the spacetime structure. The sections

4 and 5 contain various illustrative examples; in section 4 a family of Schwarzschild-de Sitter

metrics is analyzed, and section 5 deals with Robertson-Walker families. In section 6 the

concept of an “intrinsic scale” is described and its viability is tested in several examples.

Section 7 contains a summary of the results.

At this point the reader should be warned already that the families of metrics consid-

ered in the examples do not yet correspond to realistic measurements or observations. In

order to be able to find analytic solutions 〈gµν〉k we usually require the spacetimes to be

highly symmetric, even in presence of the “microscope”. Sometimes this has the effect of

overdrawing the novel effects due to the k-dependence of the metric so that they might
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appear somewhat “exotic”. (In the black hole examples, for instance, the symmetry re-

quirements amount to the assumption of a “microscope” which is much larger than the

black hole itself.) As we are mostly interested in matters of principle here we shall not try

to be very realistic in this respect.

2. QEG spacetimes

In the following we assume that we have solved the exact RG equation and picked a specific

RG trajectory emanating from the non-Gaussian fixed point. This trajectory completely

defines the quantum theory of the gravitational field then, in the sense that all free param-

eters characterizing the RG trajectories are given fixed values. In a standard field theory

such as QED, say, this fixing of parameters corresponds to identifying the renormalized

values of the electron’s mass and charge with their measured values.

2.1 State dependence

Leaving technical issues aside for the moment [18] it should be possible to reformu-

late the theory resulting from a given trajectory in a Hilbert space language. In par-

ticular, one should be able to interpret the correlators of the path integral approach,
∫

Dγ γµ1ν1
(x1) . . . γµnνn

(xn) exp(−S[γ]), as expectation values involving the metric op-

erator ĝµν(x) and a certain state |Ψ〉:

〈Ψ|ĝµ1ν1
(x1) . . . ĝµnνn

(xn)|Ψ〉. (2.1)

Within the path integral formalism, the dependence on the state |Ψ〉 is encoded in the

boundary conditions imposed on the fields integrated over. While this state dependence

is of course central in the path integral approach applied to the elementary quantum

mechanics of point particles , its importance is deemphasized in the standard matter field

theories on a nondynamical Minkowski space. In the latter case |Ψ〉 is usually taken to be

the essentially unique Poincaré invariant vacuum state. As there is no a priori distinguished

(vacuum) state in quantum gravity we shall not try to fix |Ψ〉 here and to relate it to the

boundary conditions for the path integral. However, from a conceptual point of view it

will be important to keep in mind that in principle correlators such as (2.1) do depend on

the state of the gravitational field, and that the corresponding path integral incapsulates

this state dependence via boundary conditions and/or surface terms in the action (see [18]

for a more detailed discussion.)

The effective average action is defined in terms of the path integral
∫

Dγµν exp(−S[γ])

with additional mode suppression and source terms included. As a result, the functional

Γk, too, has an implicit dependence on the state |Ψ〉.
This remark applies to the standard effective action Γ = limk→0 Γk already. In fact

since, by the usual arguments, the expectation value

〈Ψ|ĝµν(x)|Ψ〉 ≡ gµν(x) (2.2)

is a critical point of Γ,
δΓ

δgµν
[g] = 0, (2.3)
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it is clear that Γ “knows” about the choice for |Ψ〉. In general the effective field equa-

tions (2.3) will have many more solutions than just the expectation value (2.2). Uniqueness

of the solution could be achieved by imposing subsidiary conditions on gµν(x). In principle

it should be possible to derive those subsidiary conditions from the path integral over γµν .

For k > 0, eq. (2.3) is replaced by the scale dependent effective field equation (1.1) and

the situation is similar. A given |Ψ〉 translates to given boundary conditions for the path

integral defining Γk. Then, by the very construction of the effective average action, the one-

point function 〈gµν(x)〉k defined by the cut-off path integral
∫

Dγ exp(−S[γ]− ∆kS + · · ·)
is known to be a solution of (1.1). However, in general (1.1) will have many more solutions

. To find out which one among them is 〈gµν(x)〉k, one should again restrict the space of

allowed solutions by subsidiary conditions which are to be derived from the path integral

and hence “know” about the state |Ψ〉.
The derivation of such subsidiary conditions is a formidable task, well beyond the

present technical state of the art. In this paper we shall therefore not try to impose such

conditions but rather analyze the space of all solutions to the effective field equations (of

a given symmetry type), keeping in mind, however, that not all solutions necessarily come

from a physically acceptable state |Ψ〉.

2.2 Scale dependent metric structure

Each state implies a family of mean field metrics
{

〈gµν〉k (x); 0 ≤ k < ∞
}

, solving the

family of effective Einstein equations (1.1) along the chosen trajectory. As for their inter-

pretation, it is important to note that the infinitely many equations in (1.1), one at each

scale k, are valid simultaneously, and that all the mean fields 〈gµν〉k refer to one and the

same physical “system”, a state |Ψ〉 of the “quantum spacetime” in the QEG sense. The

mean fields 〈gµν〉k describe the metric structure in dependence on the length scale on which

the spacetime manifold is probed. An observer exploring the structure of spacetime using

a “microscope” of resolution `(k) will perceive the universe as a Riemannian manifold with

the metric 〈gµν〉k. While 〈gµν〉k is a smooth classical metric at every fixed k, the quantum

spacetime can have fractal properties because on different scales different metrics apply.

In this sense the metric structure on the quantum spacetime is given by an infinite set
{

〈gµν〉k ; 0 ≤ k < ∞
}

of ordinary metrics.1 Thus the picture of a “QEG spacetime” which

arises from the effective field equations is that of a single differentiable manifold equipped

with infinitely many Riemannian structures which are governed by the RG equations.

2.3 k-independent vs. k-dependent diffeomorphisms

Let us denote the manifold on which the 〈gµν〉k’s are defined by S. We interpret S as

a dynamical spacetime and its elements P , P ′, · · · as “events”. Let us first focus on the

manifold structure of S, leaving aside the Riemannian structure for a moment.

On the mathematical side, we introduce local coordinates on S which establish a one-

to-one correspondence between points P , P ′, · · · and coordinate values xµ(P ), xµ(P ′), · · ·
1It has been shown [25] that in asymptotically safe theories of gravity, at sub-Planckian distances,

spacetime is indeed a fractal [40 – 42] whose spectral dimension [41] equals 2.
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. On the physical side, we assume that there exists an operational procedure which allows

us to identify points on S by means of a well-defined set of experiments. This procedure

for identifying spacetime points is required to exist independently of the metric structure

of S so that we can identify the points of S in a k-independent way. As a consequence,

after having introduced coordinates, we can label the points by xµ(P ), xµ(P ′), · · ·, and

these labels are the same for all scales.

An example of a simple (thought) experiment for identifying points could be as follows.

Let {Φa(x), a = 1, . . . , 4} be a configuration of 4 real scalar fields for which the map

xµ 7→ Φa is invertible. If this configuration is realized on S, the result (Φ1, Φ2, Φ3, Φ4) of

a measurement of all scalars at the same point identifies this point uniquely.2

In the present setting the coordinate system (more precisely: the atlas) plays a much

more important role than in classical gravity. It is precisely what can be k-independently

imposed on spacetime. One may visualize the whole quantum spacetime as a five-

dimensional manifold, with k labelling the fifth dimension. The 4D coordinates are used to

relate the four-dimensional slices at different k-values with each other by saying that the

point on the (k = k1)-slice with coordinates xµ is the “same” as the point on the (k = k2)-

slice with coordinates xµ. (This is reminiscent of the 3+1 split in canonical gravity, where

points on different spatial hypersurfaces are related via lapse and shift functions.)

The fact that both the association of coordinates to points and the physical identi-

fication of points themselves is done in a k-independent way has a consequence which is

of crucial importance for the interpretation of the theory: It implies that the group of

gauge transformations (under which “physics” is invariant) consists of k-independent dif-

feomorphisms xµ 7→ x′µ(x) only. As we agreed to use the same coordinate system on S for

all scales k, k-dependent coordinate changes xµ 7→ x′µ(x; k) are not permitted since they

would alter the relationship between coordinates and physical points which had been fixed

once and for all.

In the family (1.1) of effective field equations, k plays a purely parametric role, they

do not contain any derivatives with respect to k. The equations for different k-values are

decoupled therefore and can be solved for each k separately. Since Γk[g] is a diffeomorphism

invariant functional, the effective field equations can determine 〈gµν〉k at most up to a k-

dependent coordinate transformation. Thus, since the group of gauge transformations

consists of k-independent transformations only, it follows that the effective field equations

cannot determine the gauge invariant contents of 〈gµν〉k uniquely.

The origin of this non-uniqueness is easy to understand: At one, and only one scale

k we have the freedom to fix a gauge, i.e. to pick any system of coordinates we like and

to express the metric, at this scale, in terms of those coordinates. But after that the

relationship between coordinates and physical points (events) is fixed. As a result, from

the point of view of any other scale k′ 6= k, the coordinates have a physical meaning now and

may not be changed at will any more. The family of field equations (1.1) cannot “know”

about this physical interpretation the coordinates have acquired because it is covariant

under a set of transformations which is infinitely much larger than the actual gauge group,

2We are grateful to Max Niedermaier for a helpful discussion of this issue.
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namely under all k-dependent diffeomorphisms. This makes them “blind” to that part of

the difference between 〈g〉k and 〈g〉k′ , k′ 6= k, which is due to a change of coordinates.

In the later sections of this paper we shall describe various examples which illustrate this

phenomenon.

A different source of ambiguities which the effective field equations cannot resolve are

k-dependent constants of integration. If, in classical gravity, a set of solutions is labeled by

one real parameter, say, this parameter will be promoted to a real function of k. Below we

shall discuss the example of the Schwarzschild mass M which becomes a function M(k) in

quantum gravity.

If one wants to determine the metrics {〈gµν〉k; 0 ≤ k < ∞} unambiguously one must

work with the state |Ψ〉 or the corresponding path integral directly. Given |Ψ〉 one can, at

least in principle, derive a path integral whose boundary conditions encode this state, then

add the mode suppression term to it, and follow the standard average action construction.

Given this path integral, 〈gµν〉k is unambiguously defined by
∫

Dγ γµν(x) exp(· · ·) where

all metrics refer to the same coordinate system then.

2.4 Symmetries and Killing vectors

Let us assume we are given a family of metrics {〈gµν〉k}, all expressed in terms of one

and the same system of coordinates on S. We can now analyze the symmetries of the

Riemannian manifold (S, 〈gµν〉k) for each value of k separately. We start at some k = k0

and search for solutions of the Killing equation

LK〈gµν〉k = 0 (2.4)

where LK denotes the Lie derivative with respect to the vector field K ≡ Kµ∂µ. Let us

assume we find a set of Killing vectors Kµ
a , a = 1, 2, . . .. They generate the isometry group

of (S, 〈gµν〉k) at k = k0 in the usual way. If the scale k0 is “generic” then, by continuity,

we expect that 〈gµν〉k will have the same isometry group also at other scales close to k0. If

Kµ
a ∂µ, for a fixed, is a Killing vector of 〈gµν〉k on a certain k-interval we should distinguish

the following situations:

(a) The Killing vector is the same for all values of k, i.e. Kµ
a (x)∂µ is independent of k.

(b) The Killing vector does depend on the scale, i.e. Kµ
a (x; k)∂µ has an explicit parametric

dependence on k.

In the first (second) case we say that the symmetry is implemented in a k-independent

(k-dependent) way. The motivation for this distinction is as follows. The vector field

Kµ
a (x; k)∂µ generates a flow on S along which 〈gµν〉k does not change. In the case (a)

this flow is the same for all k. In view of the scale independent one-to-one correspondence

between physical points and coordinates this implies that in case (a) the Killing vectors

define a consistent map of physical points onto physical points.

To be more precise let us consider the two neighboring points on the same “flow line”

of Kµ
a which have coordinates xµ and x̄µ = xµ + εKµ

a (x), ε ¿ 1, respectively. If Kµ
a is

k-independent, the map of coordinates which it induces, xµ 7→ x̄µ, corresponds to a map
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S → S relating physical points. In case (b) instead, when Kµ
a depends on k, the target

coordinate x̄µ ≡ x̄µ(k) corresponds to different physical points for different values of k.

Thus we see that if a group of spacetime symmetries is implemented in a k-dependent

way it no longer corresponds to a transformation group acting on the manifold of physical

events. Below we shall discuss concrete examples of both case (a) and (b), respectively. At

certain (non-generic) critical values of k the number of Killing vectors and their character,

in particular the Lie algebra they span, can change discontinuously.

2.5 Causal structures

For any two events P1 and P2 on S we would like to know whether P1 can influence P2,

or P2 can influence P1, or whether they cannot influence one another at all. The set of

all such relationships between pairs of events constitutes a causal structure on S. Within

QEG this structure is, in principle, to be determined as follows.

Let us consider gravity coupled to some set of matter fields χI and let us fix some

solution Γk[gµν , χI ] of the RG equation. Furthermore, we pick a solution {〈g〉k, 〈χI〉k;
0 ≤ k < ∞} of the resulting coupled effective field equations of the gravity plus matter

system. This solution may be thought of as being implied by some (unperturbed) state

|Ψ〉 ≡ |Ψgravity〉|Ψmatter〉. Next one studies perturbations about this “vacuum” state by

analyzing the properties of the effective graviton propagator

(

δ2Γk

δgµν(x)δgρσ(y)
[〈g〉k, 〈χ〉k]

)−1

(2.5)

and the effective matter field propagator

(

δ2Γk

δχI(x)δχJ (y)
[〈g〉k, 〈χ〉k]

)−1

. (2.6)

Using these effective propagators one then determines the propagation characteristics of

the graviton and matter field fluctuations in the given background. Knowing them, we can

infer which events can be connected to a given event P1 by a propagating gravity or matter

perturbation. For each type of propagating modes one can determine a mode-dependent

“causal future” of P1, the set of events which can be influenced by P1. Generically these

sets will all be different; typically some P2 can be in the “causal future” of P1 with respect

to one mode but not to some other.

An example in classical relativity is provided by two events on the light cone of

Minkowski space: if the propagators are the classical ones, the two events can be con-

nected by the propagating modes of the electromagnetic field, but not of some massive

vector field. In quantum gravity, in particular when the renormalization effects are strong,

the situation is much more involved since the effective propagators can differ quite sub-

stantially from their familiar second-order form because generically Γk contains all sets of

higher derivative and non-local terms. The graviton propagator in the fixed point regime [5]

is of the 1/p4-type, for instance. Moreover, it is well known that even on a fixed classi-

cal spacetime manifold matter quantum effects alter the propagation characteristics of the

matter fluctuations, the photon in particular, and modify the light cone structure [43].
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After having defined the mode-dependent “causal future” of P1 it seems plausible to

define the true causal future of this point as their union. Every P2 in the true causal future

of P1 can be influenced by P1 by at least one type of propagating mode, but typically not all

of them. Analogous remarks apply to the causal past of P1. In the standard situation with

classical second-order propagators all massless fields are equally “efficient” in establishing

causal links, they define the boundary of the causal future, while all massive fields are less

efficient. But, as we emphasized above, RG effects can change this simple pattern.

The upshot of the above discussion is that in QEG the notion of causality is an a priori

scale dependent concept. Its k-dependence stems from two different sources:

(a) The unperturbed metric 〈gµν〉k is k-dependent.

(b) The propagation characteristics of the field perturbations which are used to send

signals from one point to another are k-dependent.

For simplicity’s sake, and in order to disentangle the two effects, we shall focus on

the mechanism (a) in the present paper. We assume a situation in which the relevant

propagators are still sufficiently close to the standard second-order ones so that the causal

structure is determined by the light cones which are implied by the propagators of the

massless fields (the photon propagator in particular, of course) or, in a geometric-optical

approximation, by the null geodesics. Already in this situation a remarkable phenomenon

arises: the causal structure is scale dependent because the metric 〈gµν〉k, and therefore the

null geodesics it gives rise to, is k-dependent.

At first a scale-dependent causal structure might appear rather “exotic” and one might

wonder whether it can lead to any logical paradoxes. However, its physical origin is easy

to understand and a tentative interpretation would be as follows. If an event P1 is the

“cause” of an “effect” at P2 it must be possible to send a signal from P1 to P2. Assuming

that this signal is transmitted via some field quanta carrying energy and momentum, the

signal itself influences the gravitational field. In general it will also be modified by the

physical (i.e. gravitating) apparatuses used as a “transmitter” and “receiver”. Within the

effective field theory approach the dominant modifications can be taken into account by

changing the scale at which Γk is evaluated; the new k-value should take into account the

typical scale set by the signal transmission process. Whether or not this is a quantitatively

good approximation depends on how well the transmission of the signal can be modeled by

a single-scale process. Nevertheless, in priciple it is conceivable that different experimental

setups consisting of a transmitter, the signal, and a receiver, involve different typical scales

(sizes, momenta, virtualities, etc.) and “see” different average metrics 〈gµν〉k therefore.

It thus can happen that P1 and P2 are on the same side of an event or particle horizon

for some k1, while they are on opposite sides for some other k2. We shall find various

examples of this phenomenon below.

3. k-microscopes

We use the term “k-microscope” for an idealized experimental set-up, designed to observe

the structure of the quantum spacetime, whose observations are well described by the
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effective field theory provided by the action Γk. The idealization involved here is that the

“microscope” is assumed to be characterized by a single scale only so that it is clear which

one of the effective field theories {Γk, 0 ≤ k < ∞} is to be used for its description. This

microscope “sees” a metric 〈gµν〉k solving the effective field equations of the corresponding

action functional Γk.

What is the proper resolution ` ≡ `(k) of such a microscope? Or, equivalenty: What

is the coarse graining length scale `(k) over which the metric is “averaged” when observed

with the k-microscope? The answer is in general complicated, it depends on the details of

the experimental set-up.

Here we will use a simple but universal mathematical model of a microscope [25, 44],

closely related to the very construction of the effective average action. The input data is

the set of metrics
{

〈gµν〉k
}

. The idea is to deduce the relation ` = `(k) from the spectral

properties of the scale dependent Laplacian ∆k ≡ D2
(

〈gµν〉k
)

built with the solution of

the effective field equation. For every fixed value of k, one solves the eigenvalue problem of

−∆k and studies the properties of the eigenfunctions whose eigenvalue is k2, or nearest to

k2 in the case of a discrete spectrum. We refer to an eigenmode of −∆k whose eigenvalue

is (approximately) the square of the cutoff k as a “cutoff mode” (COM) and denote the

set of all COMs by COM(k).

If we ignore the k-dependence of ∆k for a moment (as it would be appropriate for

matter theories in flat space) the COMs are, for a sharp cutoff, precisely the last modes

integrated out when lowering the cutoff, since the suppression term in the path integral cuts

out all hµν -modes with eigenvalue smaller than k2. For a non-gauge theory in flat space

the coarse graining (averaging) of fields is a well defined procedure, based upon ordinary

Fourier analysis. In this case the length ` is roughly the wave length of the COMs.

This observation motivates the following definition of ` in quantum gravity. We de-

termine the COMs of −∆k, analyze how fast these eigenfunctions vary on spacetime, and

read off a typical coordinate distance ∆xµ characterizing the scale on which they vary. For

an oscillatory COM, for example, ∆x would correspond to an oscillation period. Finally

we use the metric 〈gµν〉k itself in order to convert ∆xµ to a proper length. This proper

length, by definition, is `. Repeating the above steps for all values of k, we end up with a

function ` = `(k). In general one will find that ` depends on the position on the manifold

as well as on the direction of ∆xµ.

In the following ` will always denote the intrinsic length scale of the COMs obtained

from the above model for a “k-microscope”. Our experience with theories in flat spacetime

suggests that the COM scale ` is a plausible candidate for a physically sensible resolution

function ` = `(k), but there might also be others, depending on the experimental setup

one has in mind.

As long as the physical radius of curvature, measured with 〈gµν〉k, is much larger than

1/k, one can in general use a WKB approximation of the mode functions to show that

`(k) is roughly given by the classical result π/k. This `(k) is a proper length measured

with 〈gµν〉k. The coordinate distance ∆x from which ` was obtained (and the proper

length obtained when this ∆x is “measured” with a fixed macroscopic metric 〈gµν〉klab
)

may depend on k in a completely different way. In ref. [44] we showed that, in the case
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of a Euclidean four-sphere, there is a minimal coordinate distance ∆x with the property

that a k exists so that ∆x can be resolved by the corresponding cutoff modes. This is true

although there is no lower bound on `(k), which runs ∝ 1/k all the way towards k → ∞.

In the presence of strong curvature, `(k) may deviate substantially from π/k. It is

then in general necessary to write `(k, x, n) to account for the dependence on position and

direction. We specify the direction by a unit vector nµ.

The nµ-dependence is particularly important if the signature of the metric is

Lorentzian. Because of the possible compensation of timelike and spacelike oscillations,

one could then have arbitrarily small ` for arbitrarily small k. In flat Minkowski space,

say, a wave ∼ ei(~k~x−|~k|t) has k2 = 0 but the wavelength 2π/|~k| can be arbitrarily small.

A working procedure to determine `(k, x, n) for a given direction nµ would be to define it

from the COMs which vary as little as possible in any direction orthogonal to n.

4. The Schwarzschild-de Sitter family

In this section we illustrate several of the points discussed above by means of explicit

examples. We consider pure Lorentzian gravity in the Einstein-Hilbert approximation.

The family of effective field equations is given by eq. (1.3) then.

4.1 Running metric for a generic state

Let us find the most general solution to eqs. (1.3) with Λ(k) > 0 subject to the symmetry

constraint that 〈gµν〉k is spherically symmetric (isotropic) and stationary on all scales.

On the constant-time surfaces we use polar coordinates r, θ, φ, and we define the time

coordinate such that ∂/∂t is the Killing vector related to stationarity.

Applying the familiar textbook arguments [45] at each value of k we see that in these

coordinates the most general static isotropic line element 〈ds2〉k ≡ 〈gµν〉kdxµdxν is given by

〈ds2〉k = −F (r; k)dt2 + 2rE(r; k)dtdr + r2D(r; k)dr2

+C(r; k)[dr2 + r2dθ2 + r2 sin2 θdφ2]. (4.1)

It contains 4 free functions, C, D, E and F , which depend on the coordinate r and the

parameter k.

Let us first recall the situation in classical gravity where the 4 functions are k-

independent. There one can perform a change of coordinates which reduces the number of

free functions to 2. If one introduces as new coordinates

r′ = r C(r)1/2, t′ = t + T (r) (4.2)

with T (r) = −
∫

dr rE(r)/F (r), then the line element can be brought to the “standard

form”

ds2 = −B(r′) dt′2 + A(r′) dr′2 + r′2 [dθ2 + sin2 θdφ2]. (4.3)

The two new coefficient functions A and B can be expressed in terms of the original ones,

see ref. [45].
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In quantum gravity where the metric coefficients depend on k an analogous reduction

from 4 to 2 free functions is not possible. The reason is that in this case the change of coor-

dinates (4.2) would involve k-dependent functions C(r; k) and T (r; k) but, as we discussed

in section 2.3, the group of gauge transformations consists of k-independent diffeomor-

phisms only. We would like the coordinates (t1, r1, θ1, φ1) to belong to the same physical

point P1 for all values of k, and therefore only k-independent coordinate transformations

are possible. We may use the freedom to perform k-independent transformations in order

to transform 〈ds2〉k to the standard form (4.3) at one particular value of k at most. The

gauge transformations are “used up” then, and on all other scales k′ 6= k one still needs 4

functions C, D, E and F to parametrize the most general static isotropic metric.

The parametrization (4.1) is now used as an ansatz for solving the familiy of field

equations. Inserting (4.1) into (1.3) one obtains a coupled system of ordinary differential

equations, involving C, D, E and F , and its derivatives with respect to r. We shall not

write down these complicated equations here. Suffice it to say that the equations belonging

to different k-values are completely decoupled and can be solved for each k separately.

But at fixed k the situation is the same as in classical gravity where the field equations

determine only two functions, after the other two have been fixed by an appropriate choice

of coordinates.

Here we see very explicitly that the field equations cannot fix 〈gµν〉k completely. As we

discussed already, they determine 〈gµν〉k up to a k-dependent diffeomorphism. But since

the group of gauge transformations consists of k-independent diffeomorphisms only, the

family {〈gµν〉k; 0 ≤ k < ∞} encodes additional physical information which is “known” to

the state |Ψ〉 only, but not to the effective field equations.

4.2 A special class of states

The previous subsection can be summarized by saying that in the static isotropic case the

running metric is parametrized by 4 functions of r and k. The effective field equations

allow us to express 2 of them in terms of the other 2; the latter can be found only from

|Ψ〉 or the corresponding path integral directly.

In order to illustrate another point we shall now assume that there exists a class of

states |Ψ〉 for which, for any k, the metric assumes the more special form

〈ds2〉k = −f(r; k)dt2 +
dr2

g(r; k)
+ r2dθ2 + r2 sin2 θdφ2. (4.4)

We emphasize that (4.2) represents an assumption, there is no guarantee that a state with

this property exists. Taking the more restricted structure (4.4) for granted, the effective

field equations determine the functions f and g almost completely. Inserting (4.4) into (1.3)

one infers that the most general solution has g(r; k) = f(r; k) and

f(r; k) = 1 − 2m(k)

r
− Λ(k)

3
r2. (4.5)

Obviously, for every k, (4.4) with (4.5) is a Schwarzschild-de Sitter metric for the cosmolog-

ical constant Λ(k). Here m(k) is a constant of integration which may be chosen differently
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at different scales. While Λ(k) is dictated by the RG equation, we cannot deduce m(k)

from the effective field equations.

This is an example of the second source of ambiguities mentioned in subsection 2.3:

Constants of integration which are just numbers in classical gravity become functions of

k in quantum gravity. This type of ambiguity, too, can be resolved only by analyzing the

state |Ψ〉 directly.

As in classical gravity one might interpret m(k) ≡ G(k)M(k) as the product of the

running Newton constant and a running black hole mass M(k). From the point of view of

the effective field equations this seems a bit artificial, though, since in vacuo they do not

contain G(k).

The function f(r; k) is positive only in a finite portion of spacetime. This region is

sandwiched between two horizons at which f(r; k) = 0: the black hole event horizon at

r = re(k) and the cosmological horizon at r = rc(k). As long as m(k) and Λ(k) are both

sufficiently small, we have re(k) ¿ rc(k), and their values are approximately

re(k) ≈ 2m(k), rc(k) ≈
√

3

Λ(k)
. (4.6)

In order to get a first understanding of the scenarios which are in principle possible for

the “zooming” into the QEG spacetime we consider two special examples for the function

m(k). We assume that there exist states |Ψ〉 giving rise to this particular form of m(k),

but strictly speaking there is no guarantee for their existence. However, the first example

is well motivated both by explicit perturbative and RG computations which establish the

postulated behavior in a certain regime at least.

(a) m(k) decreases with growing k. We assume that, in a certain interval of k-values,

(i) the function m(k) decreases monotonically with increasing k, and (ii) the cosmological

constant Λ(k) is small there so that rc(k) À re(k). The second assumption means that

we are essentially looking at a Schwarzschild black hole for which the cosmological horizon

plays no important role.

Writing m(k) ≡ MG(k) with M = const we see that the assumption (i) amounts

to a running G(k) which decreases with increasing k. This is exactly the “antiscreen-

ing” behavior implied by the RG equations [1]. In fact, in refs. [29] the RG-improved

Schwarzschild metric was obtained by taking the running of Newton’s constant into ac-

count, and contact was made with the quantum corrected Newtonian potential calculated

perturbatively within the effective field theory approach to gravity [46, 47]. These explicit

analyses indicate that there should indeed exist states with the properties assumed above.

Since re(k) ≈ 2m(k), a decreasing m(k) implies that the event horizon moves inward

as we increase the scale k. As a result, there exist (space) points Q which are inside the

horizon according to the metric 〈gµν〉k1
, but are outside when one uses 〈gµν〉k2

with k2 > k1

instead. Let us position some observer at a point Q′ with rQ′ > re(k1). Then this observer

can receive signals from Q according to the causal structure pertaining to the scale k2, but

not to the one for k1. This is an example of “scale-dependent causality”.
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While seemingly paradoxical at first sight, its interpretation should be clear from the

discussion above: In the quantum regime, the transmission of a signal can no longer be

modeled by a (massless) test particle, but rather the backreaction onto the metric of the

complete physical system consisting of a transmitter, the signal per se, and a receiver has

to be taken into account. In the average action approach this is done, to leading order, by

changing the relevant scale k.

In describing the transmission process by the set of metrics (4.4) we made the tacit

assumption that it preserves the original symmetries of the spacetime without the transmis-

sion apparatus. This might be an oversimplification when it comes to describing realistic

physical experiments, but it does not affect our general conclusion that causality is a res-

olution dependent notion, in principle.

(b) m(k) is constant. Next we assume a state for which the function m(k) ≡ m0 is

constant and take G(k) and Λ(k) to follow a Type IIIa trajectory. Both horizons are now

unaffected for k > kT , where kT is the turning point of the trajectory, as described in

the Introduction. For k well above kT , Λ(k) grows ∝ k4. This implies that the radius of

the cosmological horizon gets smaller as k increases: rc(k) ∼ k−2. (This is analogous to

the k−2-shrinking of the sphere in [44].) At the same time, the inner horizon at re(k) is

driven outwards because of the growing importance of the term Λ(k)
3 r2 in f(r; k). Finally,

at k = km, the two horizons merge when Λ(k) reaches the value

Λ(k = km) =
1

9m2
0

, (4.7)

at the position

re(km) = rc(km) = 3m0 =
1

√

Λ(km)
. (4.8)

The scale km where the horizons merge can be in the range where Λ(k) ∼ k4 or in the fixed

point regime where Λ(k) ∼ k2, depending on the value of m0. For k > km, f(r) is negative

everywhere, and as a result the causal structure of spacetime on these scales is completely

different from that at small k.

5. Robertson-Walker families

Next we analyze the effective field equations imposing a different symmetry requirement.

We assume that, for any value of k, the effective spacetime is foliated by spacelike hyper-

surfaces which are homogeneous and isotropic. Specializing further for flat hypersurfaces,

the most general metric consistent with these requirements is of the form

〈ds2〉k ≡ 〈gµν〉k dxµdxν = −b2(t; k) dt2 + a2(t; k) δijdxidxj . (5.1)

It contains two free functions a and b of the time coordinate t. If it were not for their

parametric k-dependence, one could redefine the time variable (t → t′ =
∫

b dt) in order

to achieve b = 1. This would lead us to the standard form of the Robertson-Walker line

element as it is usually used in cosmology. However, as the group of gauge transformations
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consists of k-independent diffeomorphisms only, b = 1 can be achieved for one value of k

at most, but not for all. Therefore, if the symmetry requirement is the only subsidiary

condition constraining the form of 〈gµν〉k, the most general form of the running metric

contains two free functions of t and k.

For generic functions a and b the metric (5.1) admits 6 Killing vectors Kµ
a ∂µ related

to homogeneity and isotropy. They are k-independent since they just translate and rotate

the spatial cartesian coordinates xi in the usual way; these transformations do not involve

the k-dependent functions a and b as the xi’s do not get mixed with t.

5.1 Vacuum solutions

Again employing the Einstein-Hilbert truncation, we assume that no matter is present so

that the effective Einstein equations assume the form (1.3). Inserting the ansatz (5.1) we

obtain a single differential equation for a and b:3

3

(

ȧ(t; k)

a(t; k)

)2

= Λ(k) b2(t; k). (5.2)

Here we encounter another example of the phenomenon that the effective field equations

cannot fully determine the physical contents of the running metrics because they are invari-

ant under k-dependent diffeomorphisms while physics is invariant under k-independent ones

only. The single equation (5.2) does not contain enough information to determine both

a(t; k) and b(t; k) after fixing initial conditions. The reason is clear: By a k-dependent

change of the time coordinate we can transform b into any function we like, including

b ≡ 1, if we use the new time

t′(t; k) =

∫ t

b(t̄; k)dt̄. (5.3)

But this transformation is forbidden in the present context. The new time coordinate

depends on the old one in a scale dependent way which destroys the required k-independent

one-to-one correspondence between coordinates and physical points.

The allowed transformations are, however, sufficient to achieve b = 1 at a single scale,

k = k0 say. Fixing the (k-independent!) coordinate system in this way we can then use (5.2)

to determine a at k0 uniquely (up to initial conditions). The result reads

a(t; k0) = exp

[

±
√

Λ(k0)

3
(t − t1)

]

, b(t; k0) = 1 (5.4)

where t1 is an integration constant. Without further information which must come from

the state directly it is impossible to determine a(t; k) and b(t; k) for k 6= k0.

The metric (5.1) at k0, with the functions (5.4) describes a patch of de Sitter space.

As a result, 〈gµν〉k0
has more symmetries than those built into the ansatz. It admits 10

rather than just 6 Killing vectors.

At k 6= k0 the state |Ψ〉 dictates a certain function b(t; k) 6= 1. Nevertheless, the metric

〈gµν〉k still admits 10 Killing vectors. The reason is that the condition LK〈gµν〉k = 0 is

3Here and in the following a dot denotes a derivative with respect to t.

– 17 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
9

covariant under k-dependent diffeomorphisms. As a consequence, the (non-)existence of

Killing vectors cannot depend on whether we use t or t′(k) as a time coordinate. Hence

〈gµν〉k given by (5.1) with functions a and b constrained by the differential equation (5.2)

but arbitrary otherwise is maximally symmetric for any value of k.

The 6 Killing vector fields related to homogeneity and isotropy and the 4 additional

ones responsible for the enlarged symmetry are not on an equal footing, though. While the

former are k-independent, the latter may depend on the scale. The coordinate transforma-

tions generated by the former do not mix the xi’s with t, but the latter do. As a result, the

components Kµ
a (x; k) of the 4 additional Killing vectors depend on k explicitly since they

“feel” the k-dependent coefficient functions a and b in (5.1). According to the discussion in

section 2.4 this implies that the original 6 Killing vectors can be regarded transformations

on the manifold S of physical events, but not necessarily the 4 new ones. We observe a

kind of symmetry breaking here; it represents an “anomaly” in the sense that it is caused

by quantum effects.

This anomaly occurs already if there are states with b(t; k) = 1 for all t and k. The

familiar metric
〈

ds2
〉

k
= −dt2 + a(t; k)2dxidxi (5.5)

with the scale factor

a(t; k) = A exp

[
√

Λ(k)

3
t

]

(5.6)

is well known to be maximally symmetric, but even with a k-independent constant of

integration, A, some of the Killing vectors are unavoidably scale dependent because the

cosmological constant is.

The cosmology given by (5.6) has a running Hubble parameter H(k) =
√

Λ(k)/3. Since

Λ is a monotonically increasing function of k, so is H(k). As a result, a high-resolution

microscope will see the universe expand faster than one with a poorer resolving power. In

the fixed point regime where Λ(k) ∝ λ∗k
2, say, we have

a(t; k) = A exp

[

√

λ∗

3
kt

]

(5.7)

with H(k) directly proportional to k.

It is natural to search for a state |Ψ〉 in which the full de Sitter symmetries are k-

independently realized. Only such a state, with 10 k-independent Killing vector fields,

would we call a Quantum de Sitter space, since only then spacetime is maximally symmetric

as a manifold S of physical events. What are the conditions a(k; t) and b(t; k) must obey

in this case?

The k-dependence of the functions a and b must reflect the maximal symmetry of the

quantum space time. They have to grow or shrink in the same way as functions of k, and

this growing or shrinking has to be independent of the position. Taking again k0 as a

reference scale, these requirements imply

a(t; k)

a(t, k0)
=

b(t; k)

b(t; k0)
= c(k), (5.8)
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where c(k) is a function of k only.

To see the necessity of eq. (5.8) for the full symmetries to hold k-independently, we

note that maximally symmetric (classical) spacetimes have the following property: Let u

be a vector in the tangent space of a point x and v a vector in the tangent space of a point

y. If u and v have the same length, then there is always an isometry transformation which

maps x 7→ y and u 7→ v (up to a time reversal). In the quantum case, if all isometries are

required k-independent, we therefore must demand that if u and v have the same length

at some scale k0, they automatically have the same length at all scales k, since they are

always linked by the same isometry transformation. This implies that they obey

〈gµν(x)〉k uµuν = 〈gµν(y)〉k vµvν (5.9)

for all k. Since u and v generically point into different directions (e.g. if they are related

by an isometry which is a combination of translations, rotations and boosts) this is only

possible when all components of the metric have the same dependence on k, and when

this k-dependence is independent of the position. Otherwise u and v would shrink or grow

differently when k is changed, and they would be no longer of equal length. This proves

eq. (5.8).

Using (5.8) in the field equation (5.2), we see that the only solution for c(k) is

c(k) =

√

Λ(k0)

Λ(k)
. (5.10)

This k-dependence of the metric is completely identical to what we found for the four-

sphere in ref. [44]. In combination with eq. (5.4) we obtain the solution for the metrics of

quantum de Sitter space:

a(t; k) =

√

Λ(k0)

Λ(k)
exp

[

±
√

Λ(k0)

3
(t − t1)

]

, b(t; k) =

√

Λ(k0)

Λ(k)
. (5.11)

We shall return to this result in section 6.2.

5.2 Cosmological solutions with matter

Next we add a matter piece ΓM
k to the Einstein-Hilbert ansatz for the average action.

The effective field equations assume the form (1.4) then where the scale dependent energy

momentum tensor 〈T µν〉k is given by (1.5). We impose the symmetry constraint of homo-

geneity and isotropy again and consider the case of flat t = const slices. In the adapted

(t, xi)-system of coordinates, eq. (5.1) is the most general metric then and, for symmetry

reasons, 〈Tµ
ν〉k ≡ 〈gµρ〉k〈T ρν〉k has the structure

〈Tµ
ν〉k = diag[−ρ, p, p, p] (5.12)

with functions ρ ≡ ρ(t; k) and p ≡ p(t; k). If we insert (5.12) and the metric ansatz (5.1)

into the effective Einstein equations (1.4) we obtain two independent differential equations.

We take them to be the modified Friedmann equation

3

(

ȧ(t; k)

a(t; k)

)2

=

[

8πG(k) ρ(t; k) + Λ(k)

]

b2(t; k) (5.13)
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and the continuity equation

ρ̇(t; k) + 3
ȧ(t; k)

a(t; k)
[ρ(t; k) + p(t; k)] = 0 (5.14)

which corresponds to (1.7). These equations are to be supplemented by the matter equation

of motion or, in a hydrodynamical description of the matter system, by an equation of state

p = p(ρ; k).

5.2.1 Solutions with k-independent causality by constant Weyl rescaling

In absence of matter there exists a simple general method for generating solutions 〈gµν〉k
if an initial solution 〈gµν〉k0

at some reference scale k0 is known: it is enough to multiply

the initial metric by an x-independent conformal factor [25]. In fact,

〈gµν(x)〉k =
Λ(k0)

Λ(k)
〈gµν(x)〉k0

(5.15)

is a solution to (1.3) for any k if it is at k0 (excluding, as always, topology/symmetry

changes in the k-interval considered). An example is the solution (5.11). Clearly the

family (5.15) has the same light cone structure at any k and thus provides an example of

scale independent causality.

As we are going to argue that scale independent causality is more the exception than the

rule it is important to understand that in the presence of matter constant Weyl transforms

can be a solution only under highly non-generic and “unnatural” conditions.

For the metric ansatz (5.1), eq. (5.15) is equivalent to

a(t; k) =

√

Λ(k0)

Λ(k)
a(t; k0), b(t; k) =

√

Λ(k0)

Λ(k)
b(t; k0). (5.16)

It is easy to verify that (5.16) is a solution to (5.13) and (5.14) provided the energy density

and the pressure scale as follows:

ρ(t; k) =
Λ(k)

G(k)

(

Λ(k0)

G(k0)

)−1

ρ(t; k0), (5.17)

p(t; k) =
Λ(k)

G(k)

(

Λ(k0)

G(k0)

)−1

p(t; k0)

If (5.17) happens to be satisfied we indeed have found a solution with k-independent causal-

ity. However, the k-dependence of ρ and p is dictated independently by the RG flow of

ΓM
k so that in general there is no reason for (5.17) to hold. Note in particular that (5.17)

implies a very special “equation of state”

p(t; k) = w(t)ρ(t; k) (5.18)

where

w(t) ≡ p(t; k)/ρ(t; k) (5.19)
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depends on time but not on k. The factors on the r.h.s. of eqs. (5.17) have an interesting

interpretation. Since

ρΛ(k) ≡ Λ(k)

8πG(k)
(5.20)

is the scale dependent (but t-independent!) vacuum energy density due to the cosmological

constant we may write ρ and p in a form where its t- and k-dependencies factorize:

ρ(t; k) =
ρΛ(k)

ρΛ(k0)
ρ(t; k0) (5.21)

and likewise for p. The above solution with k-independent causality exists if, and only

if, the matter energy density, at any time, scales with k in the same way as the vacuum

energy density.

These remarks indicate that the relations (5.17) are highly constraining. We illustrate

this point for a single scalar field χ and the “local potential approximation”

ΓM
k [g, χ] = −

∫

d4x
√−g

(

1

2
(Dµχ)2 + Vk(χ)

)

. (5.22)

Then, for a spatially homogeneous solution 〈χ(t)〉k,

ρ(t; k) =
1

2b2

(

d

dt
〈χ(t)〉k

)2

+ Vk(〈χ(t)〉k), (5.23)

p(t; k) =
1

2b2

(

d

dt
〈χ(t)〉k

)2

− Vk(〈χ(t)〉k)

Here ρ and p have both an explicit k-dependence via the RG running of the effective

average potential Vk and an implicit one via the solution (〈g〉k, 〈χ〉k). It is clear that for a

generic RG trajectory {G(k),Λ(k), Vk(·)} and generic solution to the resulting t-dynamics

eqs. (5.23) will not comply with (5.17).

One might try to search for solutions with k-independent causality by allowing the

metrics at different scales to be related by a position-dependent conformal factor:

〈gµν〉k = C(x; k, k0)〈gµν〉k0
. (5.24)

However, for a generic RG trajectory and solution to the field equations the metric will not

be of the form (5.24). The reason is clear: in the exact theory the RG trajectory amounts

to infinitely many running couplings such as G(k), Λ(k), or the function Vk(·) which by

itself contains already infinitely many couplings. All of these couplings get changed when

we switch to another trajectory. At the level of solutions, this change cannot in general

be absorbed by a change of the single function C(x; k, k0). Therefore, unless one is dealing

with a highly symmetric theory or performs an extreme finetuning of initial conditions,

a generic solution for the running metric will not be of the type (5.24). As a result, the

causal structure will depend on k then.
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5.2.2 Cosmologies with k-dependent causality

In order to illustrate the case of scale dependent causal structures we assume in this section

that there exists a class of special states with

b(t; k) = 1 for all t and k. (5.25)

We employ a hydrodynamical description of the matter system and take the equation

of state to be p = ρ/3, corresponding to a traceless energy momentum tensor. Hence the

metric reads 〈ds2〉k = −dt2+a2(t; k)dx2, and the Friedmann equation (5.13) and continuity

equation (5.14) assume their standard form. For an RG trajectory with Λ(k) > 0 in the

k-interval of interest their general solution reads:

a(t; k) =

[M(k)G(k)

2Λ(k)

{

cosh

[

4

3

√

3Λ(k)(t − t0)

]

− 1

}]1/4

, (5.26)

ρ(t; k) =
M(k)

8πa4(t; k)
. (5.27)

This solution contains two constants of integration, M(k) and t0. The k-dependence of

M(k) is not fixed by the Einstein equations. On the other hand, the constant of integration

t0 cannot depend on k, since this would be inconsistent with our definition of an effective

QEG spacetime: The range of the time coordinate is the interval (t0,∞). The universe

starts with a big bang singularity at t = t0. If we had t0(k1) < t0(k2), the era between

t0(k1) and t0(k2) would exist when spacetime is probed at the scale k = k1 but not at

k = k2. This would be in contradiction with our assumption that there is the same one-to-

one correspondence between coordinates and events for all k. Thus t0 must be independent

of k, and we may set t0 = 0 by readjusting the time axis.

Let us consider the fixed point regime as an example. Every QEG trajectory4 starts

near the NGFP (g∗, λ∗) where the dimensionful gravitational parameters behave as

G(k) = g∗/k
2, Λ(k) = λ∗k

2. (5.28)

With this RG running, valid for k ? mpl, eq. (5.26) becomes

a(t; k) =
1

k

[

g∗M(k)

2λ∗

]1/4 {

cosh

[

4

3

√

3λ∗ k t

]

− 1

}1/4

. (5.29)

It is instructive to analyze (5.29) in the regimes where k is much smaller or larger than the

second mass scale in the problem, 1/t. We have

a(t; k) =
(g∗

6

)1/4
M(k)1/4

√

t/k for mPl > k ¿ 1/t, (5.30)

a(t; k) =

(

g∗M
2λ∗

)1/4 1

k
exp(

√

λ∗/3 kt) for k À 1/t. (5.31)

4The quantum fluctuations of the matter fields influence the RG flow. The NGFP is known to persist

for a broad class of matter systems, however [9].
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A “microscope” with a comparatively poor resolution, corresponding to a small k ¿ 1/t,

sees essentially the classical a ∝
√

t expansion. Since 1/t ∝ H(t) here, this microscope

focuses on “super-Hubble” structures. On the other extreme, a high resolution microscope

with k À 1/t perceives the universe as exponentially inflating. Its Hubble parameter

H =
√

λ∗/3 k is constant in time but depends on k: the better the resolution of the

microscope is, the faster seems the universe to expand. This phenomenon is related to the

fractal and self-similar properties of QEG spacetimes discussed earlier [3, 5, 25].

At this point we can make contact with the RG improvement approach. A microscope

whose resolution is continuously readjusted so that k = 1/t sees the universe expanding

according to

a(t; k) ∝ (M(1/t))1/4 t for k = 1/t. (5.32)

For M = const one recovers precisely the linear expansion a ∝ t which was found in [30]

by a completely different reasoning.

The causal structure of the spacetime with the scale factors (5.29) does indeed depend

on k. This becomes manifest when one investigates possible particle horizons, for example.

A Robertson-Walker metric implies a particle horizon of coordinate (or comoving) radius

rH(t; k) =

∫ t

0

dt′

a(t′; k)
(5.33)

provided the integral on the r.h.s. of (5.33) converges at its lower limit. If rH is finite,

a fixed event at r = 0 and time t can be influenced causally only by the events inside a

spatial ball with this coordinate radius. Now, since the relationship between coordinates

and events is strictly k-independent, a scale dependence of rH(r; k) means that the set of

events which can influence the event at r = 0 and time t is k-dependent. For the a(t; k) of

eq. (5.29) this is indeed seen to happen.

The radius (5.33) corresponds to the proper distance

dH(t; k) = a(t; k)

∫ t

0

dt′

a(t′; k)
(5.34)

when lengths are measured with 〈gµν〉k. Note also that with the more general metric (5.1)

eq. (5.33) gets replaced by

rH(t; k) =

∫ t

0
dt′

b(t′; k)

a(t′; k)
. (5.35)

This indicates again that the second, undetermined metric function can acquire a physical

significance when RG effects are taken into account.

More information would probably be available when one investigates what properties a

“reasonable” state would have, particularly in the matter sector. In late cosmology, where

matter is given as a set of particles with only weakly k-dependent masses m(k), the running

of ρ(t; k) essentially boils down to the running of the scale factor. It is reasonable to assume

that at any given time t1, the number of particles varies only very slightly with k, up to

very high energies. Then one can use information about the k-dependent masses of these
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particles to relate ρ(t1; k) with a(t1; k) (the number density of particles is proportional to

a(t1; k)−3), now considered as functions of k only:

ρ(t1; k) = m(k)n a(t1; k)−3, (5.36)

where n is the number density per unit coordinate volume. This determines the cosmolog-

ical solutions to a greater extent.

One of the main arguments used for the motivation of inflation is the so-called “horizon

problem”. The statement is that at the time when the microwace background radiation

was emitted, far-separated regions of the universe had very similar properties although they

had up to then no time to “communicate” with each other, in the framework of standard

cosmology without inflation. We wish to emphasize here the possibility that the horizon

problem might be solvable by the k-dependent causality structure of spacetime, without

inflation. For the high energy processes of the very early universe (e.g. in the Planck

era), it is very likely that the most appropriate description is obtained when one uses a

k-microscope with very large k. For such a view on the early universe, it may well be that

regions appear causally connected that would be far outside each other’s horizons within

the classical description, i.e. with 〈gµν〉klab
. Note in particular that the term “Planck era”

refers to the set of spacetime points which are separated from the big bang by less than a

Planck time when time is defined via 〈gµν〉klab
.

A first encouraging result indicating that quantum gravity might solve the horizon

problem without inflation was found in [30] in the context of RG improved field equations.

Their solution corresponding to the very early universe does not have a particle horizon!

6. The concept of an intrinsic scale

We continue to consider homogeneous and isotropic cosmologies described by metrics of the

form (5.1). Let us consider an arbitrary physical structure in the QEG spacetime which has

a comoving length ∆x. A typical example would be the wavelength of some perturbation.

Then the running metric 〈gµν〉k associates to the fixed coordinate length ∆x the running

proper length

L(t; k) = a(t; k)∆x. (6.1)

What would be a sensible choice for the scale k when one tries to observe the ∆x-object

by means of a “k-microscope”? Following the discusion of the “intrinsic scale” in ref. [44]

a plausible choice seems to be the scale k ≡ kin(∆x, t) at which the resolving power of the

microscope, `(k), equals precisely the yet to be determined proper length of the object:

L
(

t; kin(∆x, t)
)

= `
(

kin(∆x, t)
)

. (6.2)

If ` = `(k) and the scale factor a(t; k) are known, this condition yields the following implicit

equation for kin(∆x, t):

a
(

t; kin(∆x, t)
)

∆x = `
(

kin(∆x, t)
)

. (6.3)
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If this equation has a unique solution it is natural to define the folowing length Lin(t) as

the (t-dependent, but k-independent) proper length “intrinsic” to the ∆x-object:

Lin(t) ≡ L
(

t; kin(∆x, t)
)

= a
(

t; kin(∆x, t)
)

∆x. (6.4)

As in classical cosmology, we may refer to the ratio of the object’s proper length and

comoving length as a scale factor. However, in the present case this ratio

Lin(t)/∆x = a
(

t; kin(∆x, t)
)

≡ ain(t;∆x) (6.5)

yields a scale factor ain(t;∆x) which itself depends on ∆x and, in a sense, is “intrinsic”

to the ∆x-object. Stated differently, objects of different comoving size are affected by the

cosmological expansion in different ways; each of them has its own scale factor,

Lin(t) = ain(t;∆x)∆x, (6.6)

and its own bin(t;∆x) ≡ b(t; kin(∆x, t)). Though surprising at first sight, the physical

mechanism behind this phenomenon is clear: Objects of different sizes are optimally de-

scribed by taking the gravitational couplings at different scales, and as a result the effective

spacetime they determine is different from object to object.

A similar discussion applies to temporal proper distances. Let us consider two events

P1 and P2 which have identical xi-coordinates and t-coordinates differing by an amount

∆t > 0 with respect to the system of coordinates in which (5.1) is written. According to

the metric 〈ds2〉k the proper time elapsed between the events is

T (t; k) = b(t; k)∆t. (6.7)

As in the spatial case, one can try to adjust k ≡ kin(∆t, t) in such a way that the resulting

proper time matches exactly the resolving power:

b
(

t; kin(∆t, t)
)

∆t = `
(

kin(∆t, t)
)

. (6.8)

If this equation has a unique solution the natural definition for the proper time distance

“intrinsic” to the two events is

Tin(t) ≡ T
(

t; kin(∆t, t)
)

∆t = b
(

t; kin(∆t, t)
)

∆t. (6.9)

It is derived from the explicitly ∆t-dependent Robertson-Walker metric with ain(t;∆t) ≡
a(t; kin(∆t, t)) and bin(t;∆t) ≡ b(t; kin(∆t, t)).

We shall illustrate the points made above employing the COM definition of the re-

solving power `(k) which was explained in section 3. In particular we assume that the

WKB approximation is valid so that approximately `(k) = π/k. In this case we have

kin(∆t, t) = π/Lin(t) which, when inserted into (6.4), leads to an implicit equation directly

for Lin(t):

Lin(t) = a
(

t;π/Lin(t)
)

∆x. (6.10)

For intrinsic proper time intervals we use the same `(k), whence

Tin(t) = b
(

t;π/Tin(t)
)

∆t. (6.11)

Next we turn to various examples.
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6.1 Example: de Sitter family with k-dependent Killing vectors

Our first example is the de Sitter type family of metrics (5.5) with (5.7) which has some of

its symmetries implemented in a k-dependent way. It is based upon the fixed point running

Λ(k) = λ∗k
2. For this family, eq. (6.10) reads

Lin(t) = A∆x exp

[

√

λ∗

3

πt

Lin(t)

]

. (6.12)

This functional equation can be solved in terms of the Lambert W -function5 W0:

Lin(t) =
α t

W (αt/A∆x)
. (6.13)

Here α ≡ π
√

λ∗/3, and the corresponding intrinsic scale factor reads

ain(t;∆x) =
α t

∆xW (αt/A∆x)
. (6.14)

We see that it depends explicitly on the size of the object whose size is measured with the

corresponding metric. While it seems absurd from the point of view of classical Riemannian

geometry, this phenomenon is very natural from a quantum field theory perspective. The

∆x-dependence of ain simply reflects the fact that large objects “feel” the value of the

gravitational parameters on other scales than small objects do. Since Λ(k) ∝ k2 ∝ 1/L2 is

the smaller the larger L is, small objects will appear to expand faster than larger ones.

We can display this behavior analytically by specializing for objects which are much

smaller than αt. If y ≡ αt/A∆x À 1 we may use the following asymptotic expansion of

W0 for x → ∞:

W0(y) = ln y − ln ln y +
ln ln y

ln y
+ · · · (6.15)

Retaining only the first term we get approximately

ain(t;∆x) =
α t

∆x ln(αt/A∆x)
. (6.16)

Remarkably, apart from a logarithmic correction, ain is a linear rather than exponential

function of time (as it was classically): ain ∝ t/∆x. This slowing down of the expansion

by quantum effects is easy to understand: as the universe expands and Lin(t) becomes

larger, the object considered feels an ever decreasing cosmological constant. The combined

effect of the exponential expansion and the continuous reduction of Λ(k) is the linear

expansion (6.16).

Furthermore, we can look at objects of different size at a fixed time. Because we have

approximately ain ∝ t/∆x we see that large objects have indeed a lower expansion rate

than small ones.

So far we concentrated on the innermost “core” of the QEG spacetime. When we move

“outward”, Λ(k) leaves the NGFP regime. If it approaches a constant value below some k,

5By definition [48], the W -function satisfies W (x) exp[W (x)] = x, and W ≡ W0 denotes its real branch

analytic at x = 0.
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the spacetime will look like a classical de Sitter space macroscopically. If this constant is

zero, it will approach a standard smooth Minkowski space on large distance scales.

It is quite intriguing that even Minkowski space, if we put it under a sufficiently strong

microscope, might show a complicated pattern of cosmological constant driven “expan-

sions” which we usually consider in macroscopic cosmology only. One has to be careful in

applying this cosmology-type picture, however, since it provides only a local description

in the domain accessible by the highly symmetric Robertson-Walker metric. In fact, our

simple model for the observation of spacetime by a “microscope” assumes that even in

presence of the (back-reacting!) microscope the universe is homogeneous and isotropic. In

realistic experiments this will not be the case presumably so that one has to deal with

families 〈gµν〉k with less or no symmetry which are clearly much harder to come by.

6.2 Example: de Sitter family with k-independent Killing vectors

Our second example is the “anomaly free” de Sitter family with 10 scale independent

Killing vectors. As we found in eq. (5.11), it corresponds to

a(t; k) =

√

Λ(k0)

Λ(k)
exp(H0t), b(t; k) =

√

Λ(k0)

Λ(k)
, (6.17)

where H0 =
√

Λ(k0)/3. We analyze this family for a model trajectory of the type

Λ(k) = B kω, B > 0, (6.18)

with an arbitrary constant exponent ω ≥ 0. Important special cases include ω = 0 (classical

dS), ω = 2 (fixed point regime) and ω = 4 (k4-regime). Therefore, with the abbreviation

γ ≡
√

B/Λ(k0),

a(t; k) = γ−1k−ω/2 exp(H0t), b(t; k) = γ−1k−ω/2 (6.19)

so that the self-consistency condition (6.10) assumes the form

Lin(t) = γ−1

(

Lin(t)

π

)ω/2

exp(H0t)∆x. (6.20)

Its solution is easily found:

Lin(t) = πω/(ω−2)
( γ

∆x

)2/(ω−2)
exp

[

−
(

2

ω − 2

)

H0t

]

. (6.21)

The corresponding scale factor reads

ain(t;∆x) = β exp

[

−
(

2

ω − 2

)

H0t

]

. (6.22)

where we introduced

β ≡ γ2/(ω−2)
( π

∆x

)ω/(ω−2)
. (6.23)
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Together with bin(t;∆x) = b(t;π/Lin(t)), given explicitly by

bin(t;∆x) = β exp

[

−
(

ω

ω − 2

)

H0t

]

, (6.24)

it constitutes the Robertson-Walker metric “intrinsic” to structures of comoving size ∆x:

〈ds2〉in ≡ 〈ds2〉kin
= −b2

in(t;∆x) dt2 + a2
in(t;∆x) dx2. (6.25)

The line element (6.25) reads in explicit form

〈ds2〉in = β2 exp

[(

2ω

ω − 2

)

H0t

]

{

−dt2 + exp(2H0t)dx
2
}

. (6.26)

As it should be, this equation coincides with 〈ds2〉in = [Λ(k0)/Λ(kin)]〈ds2〉k0
. In fact,

from (6.21) and kin = π/Lin we obtain the following expression for the intrinsic scale:

kin(t;∆x) =

(

∆x

πγ

)2/(ω−2)

exp

[(

2

ω − 2

)

H0t

]

. (6.27)

It is instructive to rewrite it in terms of the proper length L(t; k0) measured with 〈ds2〉k0
:

kin(t;∆x) = k
ω/(ω−2)
0 (L(t; k0)/π)2/(ω−2). (6.28)

The above results are somewhat surprising and several comments are in order here.

For ω = 0 we recover the classical results: the scale factor grows as ain ∝ exp(H0t) and is

independent of ∆x, bin is constant, and eq. (6.28) yields the expected inverse proportionality

kin∝1/L(t; k0).

For a fixed ∆x, we are free to bring the “intrinsic” metric into the “true” Robertson-

Walker form, i.e. to adjust the time coordinate such that bin =1 at all times. For ω 6=0, 2

we define

t̃ ≡
∫

bin(t;∆x)dt = β
2 − ω

ωH0

(

exp

[

ω

2 − ω
H0t

]

− 1

)

. (6.29)

We fixed the integration constant such that t̃(t = 0) = 0. Now obviously bin(t̃,∆x) = 1,

and the scale factor becomes

ain(t̃;∆x) = β

[

1 +
ωH0t̃

(2 − ω)β

]2/ω

. (6.30)

The cosmology with the scale factor (6.30) is quite remarkable: For ω > 2 it describes a

contracting rather than expanding universe, even though a(t; k) ∝ exp(+H0t) grows for

every fixed value of k. Moreover, the “intrinsic history” of the object of size ∆x ends in a

“big crunch” singularity at

t̃ =
(ω − 2)β

ωH0
. (6.31)

The case ω = 4 is particularly relevant since the middle part of most trajectories is

well approximated by Λ ∝ k4, G = const. For the separatrix this “k4-regime” even extends

to k = 0. For ω = 4, the scale factor (6.30) is

aω=4
in (t̃,∆x) =

γπ2

(∆x)2

√

1 − 2H0(∆x)2

γπ2
t̃. (6.32)
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Its “big crunch” singularity is not reached actually, since ∆x at some point leaves the

ω = 4-regime and enters the fixed point regime with ω = 2. Furthermore, eq. (6.28)

becomes

kω=4
in (t;∆x) = k2

0L(t; k0)/π, (6.33)

i.e. rather than inversely, the scale kin is directly proportional to L(t; k0).

These results seem to be counter-intuitive, but they have a natural physics explanation,

in fact. The effective time evolution of ain is given by the equation

d

dt
ain(t;∆x) = ∂ta(t; kin(t;∆x)) +

(

∂tkin(t;∆x)
)

∂ka(t; k)|k=kin(t;∆x). (6.34)

The first term on the right hand side of (6.34) is the time derivative at fixed k which is

dictated by the effective field equations at the fixed scale k. In our case it is given by

the exponential growth ∝ exp(H0t). The second term accounts for the rescaling of ain

due to the change of k. It is in general cosmologies a property of the particular state

considered and is usually only to a small extent determined by the flow equations. In our

highly symmetric case it is determined by the factor
√

Λ(k0)/Λ(k). The term ∂tkin(t;∆x)

is itself a function of the l.h.s. , (d/dt)ain, and therefore (6.34) is an implicit equation.

For ω > 0, the term ∂ka(t; k) amounts to a “shrinking” of space with increasing k. The

effective contraction described by (6.30) is explained by noting that for ω > 2 this shrinking

overcomes the exponential growth from the first term, with the result of a decreasing ain.

The explanation for eq. (6.33) is similar. The shrinking due to the large negative value

of ∂ka(t; k) is so strong that a larger coordinate distance ∆x ≡ L(t; k0)/a(t; k0) corresponds

to a smaller proper length Lin ≡ ∆xa(t; kin) and a larger value of kin. This is completely

analogous to the shrinking S4 discussed in [44]. See also the more detailed discussion there.

Finally we note that the notion of an “intrinsic length” breaks down directly at the

non-Gaussian fixed point, i.e. when ω = 2 exactly. This can be already seen from eq. (6.20).

In the fixed point regime, (6.20) becomes

Lin(t) = ∆x
Lin(t)

π

√

Λ(k0)

λ∗
exp(H0t). (6.35)

Lin(t) appears on both sides linearly and drops out, so the equation cannot be solved.

We already met this ill-defined situation in our previous paper [44] in the case of the

four-sphere, which had a k-dependent radius which was also proportional to Λ(k)−1/2.

In the fixed point regime, there is only one value of ∆x which can be observed with an

“appropriate” microscope. Within our parametrization the value is time dependent,

∆x = π

√

λ∗

Λ(k0)
exp(−H0t). (6.36)

When one tries to zoom deeper into this coordinate separation, spacetime locally “shrinks”

in a way so that it precisely cancels the effect of zooming.

To explain this, we note that in the fixed point regime L(t; k) is proportional to 1/k.

This means that spacetime “shrinks” when we increase the resolution k. The length Lin(t)
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usually arises by finding an “appropriate” value of k, k = kin(t;∆x), so that Lin fulfills

eq. (6.2). In the example of section 6.1. we found for any t precisely one appropriate

value of kin, as one would usually expect. But now, with the relation L(t; k) ∝ 1/k, the

correspondence breaks down. For the unique time at which eq. (6.36) is fulfilled for some

given ∆x, every k in the fixed point regime is an appropriate value for kin, and therefore

there is no preferred value for Lin. At any other time, in contrast, there is no solution for

kin and therefore again no preferred value for Lin.

These considerations show that the approximate and somewhat heuristic notion of an

intrinsic scale of an object and the spacetime geometry “felt” by this object does not always

work as unambiguously as in the example of section 6.1.

One obtains similar results for intrinsic proper distances in the time direction. The

scale is t-independent in this case,

kin(t;∆t) =

(

∆t

πγ

)2/(ω−2)

, (6.37)

and the metric coefficients read

ain(t;∆t) = γ2/(ω−2)
( π

∆t

)ω/(ω−2)
exp(H0t), (6.38)

bin(t;∆t) = γ2/(ω−2)
( π

∆t

)ω/(ω−2)
. (6.39)

Here ain has the classical time dependence ∝ exp(H0t) for any value of ω, and bin is time

independent. The relationship between ∆t and the intrinsic proper time interval is likewise

t-independent:

Tin = πω/(ω−2)
( γ

∆t

)2/(ω−2)
. (6.40)

If ω = 4, for example,

Tω=4
in = π2γ

1

∆t
. (6.41)

The “shrinking” of spacetime with growing k is again so strong that a larger coordinate

interval ∆t corresponds to a smaller proper intrinsic time Tin.

6.3 Example: Robertson-Walker cosmology with relativistic fluid

In order to connect our formalism to results obtained in earlier work (“RG improved field

equations” [30]), we finally consider a Robertson-Walker spacetime filled by a relativistic

fluid. We restrict ourselves to the following situation:

• b(t; k) = 1 for all t and k.

• The equation of state parameter w is k-independently 1/3, so that the solution

eq. (5.26) is valid for every k.

• The parameter M introduced in eq. (5.26) is k-independent.

• We consider the fixed point running of G and Λ, eq. (5.28).

• k ¿ 1/t or k À 1/t, so that either eq. (5.30) or eq. (5.31) is valid.
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The motivation for these specializations (except the last) is that the RG improvement

discussed in [30] applies to the same situation. Starting with eq. (5.30), we have to solve

Lin(t) = ∆x a

(

t, k =
π

Lin

)

= ∆x (αM)1/4
√

tLin/π (6.42)

(where α ≡ g∗/6) which yields the linear growth

Lin(t) = (∆x)2(αM)1/2 t

π
. (6.43)

The condition for the validity of eq. (5.30), kin ¿ 1/t, implies

t ¿ Lin

π
=

(

∆x

π

)2

(αM)1/2t (6.44)

or

∆x À π

(αM)1/4
. (6.45)

In the universe we live in the parameter M relevant to the radiation dominated epoch is

of the order of magnitude

M1/4 ≈ 10−30 a0

`Pl
, (6.46)

where a0 is the value of the scale factor today. Assuming that g∗ is of the order 1 we obtain

that the above approximation is valid for objects which have today a size

Ltoday = ∆xa0 À 1030`Pl ≈ 10−3cm. (6.47)

The same analysis for eq. (5.31) amounts to solving the equation

Lin(t) = ∆x a

(

t, k =
π

Lin

)

= ∆x
Lin

π
(βM)1/4 exp

(

√

λ∗

3

π

Lin
t

)

, (6.48)

where now β ≡ g∗/2λ∗. The solution for Lin is again linear in t:

Lin(t) = πt

√

λ∗

3

{

log

[

π

∆x

(

1

βM

)1/4
]}−1

. (6.49)

The condition for the validity of eq. (5.31), kin À 1/t, implies

t À Lin

π
= t

√

λ∗

3

{

log

[

π

∆x

(

1

βM

)1/4
]}−1

(6.50)

or

∆x ¿ π

(βM)1/4
exp

(

−
√

λ∗

3

)

. (6.51)

Assuming that β and exp
√

λ∗/3 are of order 1, we get for the case of our universe that

the above analysis is valid if

Ltoday = ∆xa0 ¿ 1030`Pl ≈ 10−3cm. (6.52)
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In both cases, k ¿ 1/t and k À 1/t, we found a linear intrinsic expansion ain ∝ t, valid

as long as the object is well inside the fixed point regime. In the interpolating transition

region k ≈ 1/t we expect a qualitatively similar behavior. A universe with such a time

dependence of the scale factor has no particle horizon according to eq. (5.33). So we have

indeed found a case in which the horizon problem does not occur and therefore cannot

serve as an argument for inflation. The result ain ∝ t obtained here gives independent

support to the linear expansion found by RG improving the field equations [30].

7. Summary

In this paper we analyzed various conceptual issues related to a scale dependence of the

metric. The discussion is relevant to the asymptotic safety scenario for gravity and, more

generally, to the analysis of all phenomena with a strong RG running of the average metric.

We described the role of the running effective field equations implied by the average action

of QEG and their solutions {〈gµν〉k, 0 ≤ k < ∞}.
The field equations derived from the effective average actions {Γk} allow for infinitely

many solutions at each value of k. We can only determine from them the set of solutions

at any separate value of k, but not the evolution k 7→ 〈gµν〉k corresponding to a particular

quantum state |Ψ〉. We observed two sources of ambiguities which cannot be resolved

without knowledge of |Ψ〉. First, integration constants like the parameter M in the classical

Schwarzschild solution become functions of k in the quantum case. Second, simplifications

of the metric due to appropriate coordinate transformations can be made for one value

of k only. An example was the Robertson-Walker metric ds2 = −b(t; k)2dt2 + a(t; k)2dx2.

While b can be set equal to one by a redefinition of the time coordinate in classical gravity,

this is possible for only one chosen value of k in the quantum case. We have therefore two

functions of t and k instead of one, but the field equations still determine only one of them.

Only for a maximally symmetric spacetime, i.e. de Sitter space, it was possible to de-

termine the evolution k 7→ 〈gµν〉k completely from the field equations and special symmetry

requirements. We found that the de Sitter metric scales as 〈gµν〉k ∝ Λ(k)−1.

The scale dependent metric as well as the scale dependent structure of the propagators

lead to a scale dependent notion of causality. Outside the classical regime, the position or

even existence of horizons generically depend on the field chosen to transmit a signal and

on the value of k relevant for the transmission process.

This is particularly interesting for the early universe, since it might surround the

necessity of inflation: The particle horizons leading to the so-called horizon problem (which

is one of the main arguments for inflation) are the classical horizons which may be irrelevant

at typical scales governing processes in the very early universe.

One of the central themes of this paper is the different status enjoyed by k-dependent

and k-independent diffeomorphisms. We saw that the group of gauge transformations

consists of the k-independent ones only and that this is one of the reasons why the effective

field equations cannot completely determine the gauge invariant, i.e. “physical” contents of

the family {〈gµν〉k}. Depending on whether Killing vectors are k-independent or not they

either implement a symmetry on the manifold of physical events or they are “anomalous”.
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We also discussed the possibility of assigning an intrinsic length to objects living in

a QEG spacetime, defined as the proper length of an object when observed by a “micro-

scope” which can just resolve it, and we investigated under which conditions this can be a

meaningful notion.
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